INTRODUCTION

- Traditional speedup models help the research community and industry better understand system performance capabilities and application parallelizability.
- We introduce normal form heterogeneity, that supports a wide range of heterogeneous many-core architectures.
- The modelling method aims to predict system power efficiency and performance ranges.
- The models were validated through extensive experimentation on the off-the-shelf big.LITTLE heterogeneous platform and a dual-GPU laptop.
- A quantitative efficiency analysis targeting the system load balancer on the Odroid XU3 platform was used to demonstrate the practical use of the method.

Accepted for publication in IEEE Transactions on Multi-Scale Computing Systems.

HETEROGENEITY

(a) Homogeneous system (classical Amdahl’s Law)
(b) Simple heterogeneous model (Hill-Marty) consisting of 1 big and many little cores.
(c) Proposed model: x types of cores represented by their relative performances.

AMDAHL’S LAW

Homogeneous:
\[S(n) = \frac{1}{(1 - p) + \frac{p}{n}} \]
\[p \text{ – parallelization factor, } n \text{ – number of cores.} \]

Heterogeneous:
\[S(\bar{n}) = \frac{1}{\left(\frac{1 - p}{\alpha_s} + \frac{p}{N_\alpha}\right)} \]
\[\alpha_s \text{ – sequential core performance, } N_\alpha \text{ – relative performance of all parallel cores.} \]

WORKLOAD SCALING

\[I’ = h(\bar{n}) \cdot \left((1 - p) I + pg(\bar{n}) I \right) \]
\[I \text{ – original workload, } I’ \text{ – scaled workload, } g(n) \text{ – parallel scaling, } h(n) \text{ – proportional scaling.} \]

General form speedup model:
\[S(\bar{n}) = \frac{1}{\left(\frac{1 - p}{\alpha_s} + \frac{p}{N_\alpha}\right)} \]

POWER MODELLING

\[W_{\text{total}} = W_0 + W(\bar{n}), \]
where \(W_0 \) is background power and \(W \) is effective power.
For \(w \) – BCE power, and \((\beta_1, ..., \beta_x) \) – relative core powers:
\[W(\bar{n}) = w D_w(\bar{n}) S(\bar{n}) \]
\[D_w(\bar{n}) = \frac{\beta_0 \alpha_s \left((1 - p) + pg(\bar{n}) \right) N_\alpha}{(1 - p) + pg(\bar{n})} . \]

ODROID XU3

<table>
<thead>
<tr>
<th>benchmark</th>
<th>sqrt</th>
<th>int</th>
<th>log</th>
</tr>
</thead>
<tbody>
<tr>
<td>base workload</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>core type i</td>
<td>A7</td>
<td>A15</td>
<td>A7</td>
</tr>
<tr>
<td>measured execution time, ms</td>
<td>5969</td>
<td>5126</td>
<td>5124</td>
</tr>
<tr>
<td>measured active power, W</td>
<td>0.9295</td>
<td>0.8381</td>
<td>0.7260</td>
</tr>
<tr>
<td>calculated effective power, W</td>
<td>0.1198</td>
<td>0.0897</td>
<td>0.1204</td>
</tr>
<tr>
<td>(\alpha_s)</td>
<td>1</td>
<td>0.9392</td>
<td>1</td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>1</td>
<td>4.2183</td>
<td>1</td>
</tr>
</tbody>
</table>

PARSEC BENCHMARKS

Evaluating system load balancer quality: \(N_{\text{low}} < N_{\text{meas}} < N_{\text{high}} \)

Speedup error < 1.2%
Power error < 5.6%